Structure Reports

Online
ISSN 1600-5368

Cheng Guo,* Qing-Gang Tang, Wen-Yuan Wu and Dong-Mei Zhang

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No.5, Nanjing 210009,
People's Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.062$
$w R$ factor $=0.184$
Data-to-parameter ratio $=6.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Methyl 2-amino-4-(2,6-difluorophenyl)-4H-naphtho[1,2-b]chromene-3-carboxylate

The title compound, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{3}$, was synthesized by the reaction of 2-naphthol with methyl cyanocaetate and 2,6difluorobenzaldehyde in methanol under microwave irradiation. The pyran ring adopts a boat conformation. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds link the molecules into a three-dimensional framework.

Comment

Benzopyrans and their derivatives occupy an important place in the realm of natural and synthetic organic chemistry because of their biological and pharmacological properties (Morianka \& Takahashi, 1977), such as antisterility (Brooks et al., 1988) and anticancer activities (Hyana \& Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural unit of a number of natural products and, because of the inherent reactivity of the inbuilt pyran ring, they may serve as versatile synthons (Hatakeyama et al., 1988). We report here the crystal structure of the title compound, (I).

(I)

In the molecule of (I), all bond lengths and angles are normal. The pyran ring adopts a boat conformation, with atoms O 1 and C 11 displaced by 0.234 (7) and 0.325 (7) \AA, respectively, from the mean plane through atoms $\mathrm{C} 1, \mathrm{C} 10, \mathrm{C} 18$ and C 19 . The dihedral angle between the $\mathrm{C} 1 / \mathrm{C} 10 / \mathrm{C} 18 / \mathrm{C} 19$ and C12-C17 planes is $88.9(2)^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 1) influences the orientation of the carboxylate group.

In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into chains along the [001] direction. The crystal packing is further stabilized by C $\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring, which link the chains into a threedimensional framework.
\qquad

Experimental

Compound (I) was prepared by the reaction of 2-naphthol (10 mmol) with methyl cyanoacetate (10 mmol) and 2,6-difluorobenzaldehyde (10 mmol) in methanol (3 ml) using piperidine (0.6 mmol) as catalyst under microwave irradiation for 8 min . Pure compound (I) was obtained by recrystallization from methanol (m.p. 475-477 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{3}$
$M_{r}=367.34$
Monoclinic, $C c$.
$a=13.930$ (3) \AA
$b=13.499$ (3) \AA
$c=8.9040(18) \AA$
$\beta=96.95$ (3) ${ }^{\circ}$
$V=1662.0(6) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.960, T_{\text {max }}=0.967$
1687 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.184$
$S=1.06$
1622 reflections
245 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{O} 3$	0.86	2.12	$2.707(6)$	125
N1-H1B $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.15	$2.936(5)$	151
C5-H5 F^{ii}	0.93	2.48	$3.297(10)$	146
C8-H8 $\mathrm{Cg}^{\text {iii }}$	0.93	2.74	$3.578(6)$	150

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} . C g 1$ is the centroid of the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring.

All H atoms were placed in idealized positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (carrier atom). In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and the intramolecular hydrogen bond is indicated by a dashed line.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

Brooks, G., Ottridge, A. P. \& Mace, D. W. (1988). Pestic. Sci. 22, 41-50.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hatakeyama, S., Ochi, N., Numata, H. \& Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1024.
Hyana, T. \& Saimoto, H. (1987). Jpn Patent No. JP621812768.
Morianka, Y. \& Takahashi, K. (1977). Jpn Patent No. JP52109000.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

